A general appraisal of *Ehretia laevis* Roxb: An essential medicinal plant

Chetna M Sangode, Pranjal C Tidke and Milind J Umekar

DOI: https://doi.org/10.33545/27072827.2021.v2.i1a.22

Abstract

Ehretia laevis is a rare Indian medicinal plant used from ancient times. The plant is used for a variety of purposes, including ornaments, pot herbs, wood and stone dye, medicines, wines, and cosmetics. The inner bark of *Ehretia laevis* Roxb is used in the treatment of ulcers and headaches. Also useful in treatment for schizophrenia, absorption of calcium, muscle protein, post-surgery recovery, sports injuries, production of hormones, enzymes, antibodies. The plant has many uses that that many uses for different medicinal purposes. The fresh root is used in the treatment of syphilis, and the root is also used to treat diaphtheria. Leaf powder mixed with sugar is divided into 10 equal doses. Each dose is taken daily along with goat milk curd to healing dysuria. The review focusing on the pharmacognostic parameters of *E. laevis* and pharmacological uses.

Keywords: *Ehretia laevis*, boraginaceae, phytochemical, traditional medicine

Introduction

The invention and mass production of chemically synthesized medicines has revolutionized health care in most parts of the world over the last 100 years. Orthodox practitioners and herbal medicines are also used by significant segments of the population in developing countries for primary care. Herbal medicine is one of the most important branches of herbal medicine worldwide.

In developing countries like India, the bulk of the world’s population also relies on herbal medicines to fulfill their health needs [1]. According to the World Health Organization, 80 percent of people use natural medicines for any aspect of their primary health care, exposing them to lesser-known side effects and dangers associated with chemically synthesized pharmacological drugs. As a result, bioactive extracts of medicinal plants, as well as their herbal medicine formulations, are a viable alternative to chemically synthesized medicines [2].

For the herb to be used more widely in medicinal practice, scientific confirmation of these claims is needed [3]. Long-term, seemingly unproblematic use of an herbal remedy will attest to its protection and efficacy. Herbal medicines with recorded experience from a long period of use should be distinguished from herbs whose conventional use has not been defined by research methods [4]. Plants have long been studied as a possible source of new agents. Since they include a variety of bioactive compounds with therapeutic potential. In Cameroonian folk medicine, dietary plants have a long history of being used to treat infectious diseases due to their low toxicity.

Folk medicine lacks a theoretical foundation. Modern scientific studies on these medicinal plants are critical for the plants to be used as medicines more realistically and scientifically [5]. Folklore medicines are the mainstay of conventional medical systems, having been used in medical practice for thousands of years and contributing significantly to human health. The widespread application, like those described in old texts such as Vedas and the Bible, of herbal remedies and medicines has produced medicinal products from traditional herbs and medicinal plants commonly used. It is critical to research medicinal plants with a folklore reputation in greater depth to encourage proper use of herbal medicine and to establish their potential as sources for new medicines [6].

India is perhaps the most unique country in the world, with the richest tribal or folklore medicine practices. Orthodox practitioners use these drugs to treat a variety of diseases such as fractures, arthritis, hyperlipidemia, hypertension, kidney disorders, diabetes, and liver disorders, among others [3].
This genus’ plants have medicinal value and are used in herbal medicine to treat diarrhoea, cough, cachexia, syphilis, toothache, stomach and venereal diseases, as well as an antidote to vegetable poisoning (The wealth of India raw materials 1952). The *E. laevis* plant is used for a variety of medicinal purposes. The fresh root decoction is used to treat syphilis, and the stem bark decoction is used to treat diphtheria. Externally, tender leaf paste is used to treat eczema, and the powdered flowers mixed with milk are used as an aphrodisiac. The plant is used for a variety of purposes, including ornaments, pot herbs, wood and stone dyes, medicines, wines, and cosmetics. In periods of shortage, the tree’s inner bark and fruit are consumed.

Plant description

Ehretia laevis is a rare Indian medicinal plant used from the ancient period, it belonging to a member of the Boraginaceae or Borage family, and is native to India, Pakistan, Laos, Myanmar, Vietnam, China, and Bhutan. The *Ehretia laevis* Roxb. is high valued medicinal plant and becoming rare in the state of Maharashtra. It has religious importance among Hindus. It is growing luxuriantly growing at Alandi near the Dnyaneshwar temple. The use of medicinal plants is increasing worldwide. The general information of Erthia laevis given below [7, 8].

![Fig 1: *Ehretia laevis* Roxb.](image)

<table>
<thead>
<tr>
<th>Kingdom: Plantae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division: Tracheophyta</td>
</tr>
<tr>
<td>Class: Magnoliopsida</td>
</tr>
<tr>
<td>Order: Boraginales</td>
</tr>
<tr>
<td>Family: Boraginaceae</td>
</tr>
<tr>
<td>Genus: Ehretia</td>
</tr>
<tr>
<td>Species: Ehretia laevis (Roxb)</td>
</tr>
</tbody>
</table>

Botanical name: *Ehretia laevis* Roxb.

Synonyms: *Ehretia laevis* Var. *platyphylla* Merrill.

Common/Local Name: Khanduchakka.

Regional and Other Names:

- English: Ehretia,
- Gujarati: Vadhavaradí,
- Hindi: Bhairi, Chamror, Datrang, Tamoriya
- Nepali: Datingal
- Konkan: Kalo Gamdo
- Marathi: Ajaanvruksha, Datrang
- Tamil: Kuruvcicai, Kalvirasu
- Telugu: Tellajuvvi, Paldattam

Plant: *Boraginaeae* (borage)

Family: Boraginaceae

Habit and Habitat: Small deciduous tree, with short stem and grey bark, occasionally common.

Native: India, China, Bhutan, Pakistan, Laos, Myanmar.

Flowering: January to April and Fruiting

Time:

- **Flowers:** White, up to 8 mm
- **Fruits:** A small drupe, at first red, at length black.

Properties and Uses: The inner bark of *Ehretia laevis* Roxb is used as food. Leaves are applied to ulcers and in headaches. Fruits are astringent, anthelmintic, demulcent, expectorant, diuretic, and used in the affection of urinary passages, diseases of lungs, and spleen. Powdered kernel mixed with oil is a remedy for ringworm. Seeds are anthelmintic.

Properties:

- *Ehretia laevis* is high valued medicinal plant and is known to be used by traditional healers. It is used for various medicinal purposes such as treating infections, wounds, and burns.

Habitat and Distribution:

- *Ehretia laevis* is native to India, Pakistan, Laos, Myanmar, Vietnam, China, and Bhutan.
- It is found in the state of Maharashtra, India.

Plant Description:

- *Ehretia laevis* is a small deciduous tree, with a short stem and grey bark.
- It is occasionally found growing in forests and open areas.

Flowering and Fruiting:

- Flowers: White, up to 8 mm
- Fruits: A small drupe, at first red, at length black.

Properties and Uses:

- The inner bark of *Ehretia laevis* Roxb is used as food.
- Leaves are applied to ulcers and headaches.
- Fruits are astringent, anthelmintic, demulcent, expectorant, diuretic, and used in the affection of urinary passages, diseases of lungs, and spleen.
- Powdered kernel mixed with oil is a remedy for ringworm.
- Seeds are anthelmintic.

Applications:

- *Ehretia laevis* is used in traditional medicine for various ailments.
- It is used as an herbal remedy for infections, wounds, and burns.
- The plant is also used as an ornamental plant.

References:

Authentication on chemical and genetic levels of medicinal plants is a key move for the scientific and business processes respectively. In addition to morphological markers, recent morphologic, biochemical, cytological, and molecular markers have been used to identify species. Due to growing conditions, such as temperature, soil fertility, harvest time, leaves age, drying method, etc., the chemical components and the quantities they contain in the herb will differ [12].

Phytochemical screening

The different qualitative chemical tests were performed for establishing a profile of the given extract for its chemical composition. The tests show the following results.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Test name</th>
<th>Test for</th>
<th>Aqueous extract</th>
<th>Ethanolic extract</th>
<th>Ethyl acetate extract</th>
<th>n-Hexane extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alkaline reagent test</td>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Dragendorf’s test</td>
<td>Alkaloids</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Fehling’s test</td>
<td>Carbohydrates</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Benedict’s test</td>
<td>Reducing Sugar</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Keller Killiani test</td>
<td>Glycosides</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Foam test</td>
<td>Saponins</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Biuret test</td>
<td>Proteins</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>FeCl3 test</td>
<td>Phenolic compounds</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Salkowski test</td>
<td>Triterpenoids</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Sterols</td>
<td></td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Methodology

Fig 3: Methods used for extraction of plant

Table 2: Chemical Composition of *Ehretia laevis*

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Chemical constituents</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Naphthoquinone derivative: Lewisone</td>
<td>[17]</td>
</tr>
<tr>
<td>2</td>
<td>n-octatricontane</td>
<td>[17]</td>
</tr>
<tr>
<td>3</td>
<td>Baurenol</td>
<td>[17]</td>
</tr>
<tr>
<td>4</td>
<td>Ursolic acid</td>
<td>[17]</td>
</tr>
<tr>
<td>5</td>
<td>α-amyrin</td>
<td>[18]</td>
</tr>
<tr>
<td>6</td>
<td>Lupeol</td>
<td>[18]</td>
</tr>
<tr>
<td>7</td>
<td>Betulin</td>
<td>[18]</td>
</tr>
<tr>
<td>8</td>
<td>Betulinic acid</td>
<td>[18]</td>
</tr>
<tr>
<td>9</td>
<td>β-sitosterol</td>
<td>[18]</td>
</tr>
<tr>
<td>10</td>
<td>Di – octyl phthalate</td>
<td>[19]</td>
</tr>
<tr>
<td>12</td>
<td>Hexadecanoic acid, 15-methyl-, methyl ester</td>
<td>[20]</td>
</tr>
<tr>
<td>13</td>
<td>Tridecanoic acid</td>
<td>[20]</td>
</tr>
<tr>
<td>14</td>
<td>2 (4H)-Benzofuranone, 5, 6, 7, 7a-tetrahydro-4, 4, 7a-trimethyl</td>
<td>[20]</td>
</tr>
<tr>
<td>15</td>
<td>5-Chloro-3beta-hydroxy-6beta-nitro-5,6,7,8-tetrahydro-17-one</td>
<td>[20]</td>
</tr>
<tr>
<td>16</td>
<td>1, 2-Benzenedicarboxylic acid, butyl octyl ester</td>
<td>[20]</td>
</tr>
<tr>
<td>17</td>
<td>Isobutyl octadecyl ester</td>
<td>[20]</td>
</tr>
<tr>
<td>18</td>
<td>Methyl 6, 10-octadecadienoate</td>
<td>[20]</td>
</tr>
<tr>
<td>19</td>
<td>Phthalic acid, octyl 2-propylpentyl est</td>
<td>[20]</td>
</tr>
<tr>
<td>21</td>
<td>4- (Dimethylaminomethyl-5-hydroxybenzofuran-3yl) (4-methoxyphenyl) methanone</td>
<td>[20]</td>
</tr>
<tr>
<td>22</td>
<td>2-Trimethylsiloxy-6-hexadecenoic acid, methyl ester</td>
<td>[20]</td>
</tr>
<tr>
<td>23</td>
<td>5, 8, 11, 14-Eicosatetraynoic acid, trimethylsilylester</td>
<td>[20]</td>
</tr>
<tr>
<td>24</td>
<td>2, 7-Diphenyl-1, 6-dioxopyridazin[4, 5, Z, 3][pyrrol][4, 5-d]pyridazine</td>
<td>[20]</td>
</tr>
<tr>
<td>25</td>
<td>2, 15-Heptadecadiene, 9- (ethoxy)methyl</td>
<td>[20]</td>
</tr>
<tr>
<td>26</td>
<td>4-Methoxyphenoxymannide N-methyl-N-[4- (1-pyrolidinyl)-2-butynyl]</td>
<td>[20]</td>
</tr>
<tr>
<td>27</td>
<td>Phthalic acid, butyl oct-3-yl ester</td>
<td>[20]</td>
</tr>
<tr>
<td>28</td>
<td>Methyl 4, 7, 10, 13, 16, 19-docosahexaenoate;</td>
<td>[20]</td>
</tr>
</tbody>
</table>

Proteins, Amino acids, Lipids Minerals such as Ca, Mg, Na, Fe, NH₃, Mn, P, K, Zn, Cu and Si, Gallic acid, tannins, Vit C, rutin, decanoic acids, aconitines, phthalic acid, phynylephrine, α and β amyrin, phytol, piperazine [21]. Amino acid- Butyric acid, Ornithine, Cysteine, Arginine, Serine, Histidine, Lysine, Glutamic acid, Proline, Hydroxyproline, Tryptamine having various therapeutic properties [22]. Some of the chemical constituent’s structure are shown below: Figure 4.
Fig 4: Few important compounds structure of *Ehretia laevis*

Biological activity of *Ehretia laevis*

These medicines are both costly and symptomatic but usually short-lived. In this research, the science behind this marvelous plant was evaluated, its properties demonstrated on the scientific level, an economic and safe way was offered, and its therapeutic uses being taken effectively and needy patients being helped. Also, it would be one of the best options of crop cultivation to farmers for financial support.

Exclusion criteria

1. Patients with rheumatic arthritis, tubercular arthritis, infective arthritis, syphilitic arthritis, gout, traumatic arthritis, and gonorrhoeal arthritis.
2. Patient with any systemic illness (Hepatic failure, renal failure, ischemic heart disease, and malignancy) and structural deformities.
4. Pregnant and lactating women.

Table 3: Biological Activity of *Ehretia laevis*

<table>
<thead>
<tr>
<th>Plant origin</th>
<th>Biological activity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioxidant activity</td>
<td>Fruits</td>
<td>[26]</td>
</tr>
<tr>
<td>Anti-inflammatory activity</td>
<td>Leaves</td>
<td>[28]</td>
</tr>
<tr>
<td>Antibacterial activity</td>
<td>Leaves</td>
<td>[28, 30]</td>
</tr>
<tr>
<td>Antiarthritic activity</td>
<td>Leaves</td>
<td>[21, 27]</td>
</tr>
<tr>
<td>Antidiabetic activity</td>
<td>Leaves</td>
<td>[31]</td>
</tr>
</tbody>
</table>

All parts of the *E. laevis* plant are used for different medicinal purposes. Decoction of the fresh root and stem bark for diphtheria treatment is used for syphilis treatment. Tender leaves paste is used for external eczema cure and milk flowers powder for aphrodisiac treatment. The plant has many applications, including decorations, spices, wood colour, stone, drugs, wines, and cosmetics. The inner bark of the tree and fruit are eaten in times of scarcity and as an antidote to vegetable poison (The wealth of India raw materials 1952).

Leaves are applied to ulcers and in headaches. Fruit is used as, anthelmintic, diuretic, demulcent, expectorant and used in affections of urinary passages, diseases of lungs and spleen. Seeds are anthelmintic [6]. The methanolic extract of the leaves, effective in arthritis [33]. Bark paste is applied for cuts and wounds [34]. The leaves paste is topically applied on wounds and structural deformities. Effective in various microbial diseases of hard tissues in the oral cavity [29]. Bark juice is given just after delivery to relieve delivery pain. Root used in venereal diseases (Scabies, Ulcers, Syphilis. Dysentery, Intestinal worms) and as a gargle in throat infections [36]. In Jaundice as hepato-protective properties [57]. Mouth ulcer strengthens the teeth and gums [38]. Topical Malaria, fever, earache [39]. Leaves are chewed to healing mouth blister. Leaf powder mixed with sugar is divided into 10 equal doses. Each dose is taken daily orally along with goat milk curd to healing dysuria. During the course of administration salt, chilly, tea, acidic food, acidic foods, oils are strictly prohibited [40]. Juice of leaves is used to healing dysentery, to treat intestinal worms [41]. A decoction of the bark is a gargle in throat infections. Antifungal activity against Candida albicans [42]. Ulcer and
gums brushed with stem pieces [44]. Silver nanoparticles were also synthesized from Ehretia laevis Roxb. Leaf extract by one-step green synthesis method. The nanoparticles demonstrated antimicrobial, larvicidal, and cytotoxic activity. At a concentration of 25 μg/mL, it killed 70 ± 10.24% of Culex quinquefasciatus larvae after 72 h treatment. The median lethal concentration of the nanoparticles versus HeLa, human cervical cancer cells, and MCF-7 human breast cancer cells, were calculated to 12.7 μg/mL and 14.5 μg/mL, respectively. It possessed biological activities like cytotoxicity, larvicidal activity, and antimicrobial activity to some extent [45].

Conclusions
These medicinal activities of the plant will open the door for further research and will provide good opportunities for employment and farming to strengthen the economy of the world. This spiritual plant may pave the way for humanity.

References

