Therapeutic value of wild vegetables of Kashmir valley – Review

Talat Anjum and Anupam K Mangal

DOI: https://doi.org/10.33545/27072827.2020.v1.i1a.3

Abstract
Wild vegetables have been the mainstay of human diets since times immemorial. There is an increasing consensus that wild foods could significantly contribute to alleviate hunger and cure diseases. Wild vegetables are receiving renewed attention as their potential human health benefits are being recognized. These are the cheapest and most readily available source of food that can contribute significantly to human nutrition and health as these are regarded as easily obtainable and palatable. Earlier people relied solely on wild plants as these were most abundant or readily available. With the advancement in agriculture, wild vegetables are underutilized, the present review documents therapeutic promise of 20 wild vegetables, which have remained an important part of the diet of Kashmiri people in India and are sources of potential therapeutic compounds, useful both for product development and awareness raising. These wild vegetables are generally good source of anti-oxidants, anti-carcinogenic, anti-microbial, hepatoprotective, anti-diabetic, immuno-enhancing etc. Their promotion and integration into the human diets could assist in their protracted use and consequent health benefits. If these plant species continue to be neglected and underappreciated, knowledge about them may soon be lost in time and never be recovered. It is believed that there will be more dieticians rather than physicians in coming years as many diseases can be prevented and better health can be maintained by taking the right kind of food and nutrition which contains certain plants with specific functional attributes.

Keywords: wild vegetables, therapeutic, traditional medicine, health, naturopathy

1. Introduction
The rich plant diversity of the North Western Himalayas is utilized by the native communities in various forms as medicine, edible/food, fodder, fuel, timber, etc. Earlier people were dependent on the wild vegetables, with the advancement in agriculture and supply facilities, these non-cultivated plants are not a major component of the diet. A shift from intake of traditional food to contemporary food over past few decades has been attributed to the incidence of different diseases [52, 61]. Unfortunately, the availability of some of the indigenous wild vegetables is decreasing owing to habitat destruction and population pressure. Additionally, many people are not aware of the nutritional value of such plants and regard them as inferior to use. Thus, wild vegetables are currently underutilized, and have been neglected. The multiple roles of wild traditional vegetables as both food and medicinal source have to be recognized as these are among the most important sources of natural antioxidants or for pharmaceutical applications against chronic diseases. The reintroduction of such plants may significantly contribute to human nutrition and health and may reduce the risk of diseases.

2. Wild vegetables in traditional medicine of Kashmir.
As in other parts of the world, wild vegetables have played an important role in traditional healthcare system of this region and have been used in alleviating and curing diseases. The root of Cichorium intybus L. is used for curing typhoid, enlargement of liver [56, 59], Taraxacum officinale Weber, used as tonic, diuretic, blood purifier, in jaundice [58, 62], Chenopodium foliosum Asch as laxative against jaundice and in urinary problems [62], Malva sylvestris L. for cough and fever [58], P. lanceolata L as laxative, applied against boils, cough [58, 62], Oxyria dysgyna (L.) Mill. for constipation, liver disorders and stomachache [62], Rheum emodi Wall as vermicide, antiseptic on wounds and winter frost [58].
Dipsacus mitis D. Don, used in ritual bath after child birth and against sore throat [58]. *Rumex nepalensis* Spreng against fractured and dislocated joints [58] the leaves and thorns of *Centuria iberica* L. used in burns, skin rashes, to improve eye vision and enhance lactation [63]. Leaves of *Amaranthus caudatus* L. used as expectorant, *Nymphea Stellata* Willd used as anti-periodic, cardiac stimulant, *Plantago major* L. leaves used as Styptic, *Portulaca oleracea* Roxb. Leaves used as styptic internally, *Phytolacca acinosa* Roxb. Root extract used against stomach cramps, dysentery, wounds [60]. Stems of *Nelumbium nucifera* Gaertn. used for fever, burning sensation, haematuria [55].

3. **Therapeutic promise of wild vegetables**

The traditional wild vegetables have some medicinal value which makes them a valuable addition to the diet. Literature survey on the laboratory studies of these plants has shown that most of these plants have the anti-oxidant property followed by anti-inflammatory, antidiabetic, anti-carcinogenic, anti-bacterial and hepatoprotective properties (Fig-1). The implication of oxidative stress in etiology of several chronic and degenerative diseases strongly favours that anti-oxidant therapy represents a promising avenue for treatment [54]. It is believed that with further research into the bioactive composition and mode of actions of the chemical contents of these documented plants, important lead compounds for the treatment of prevailing ailments may further emphasize their role for naturopathy in future.

Table 1: List wild vegetables with possible therapeutic use.

<table>
<thead>
<tr>
<th>Sl. no.</th>
<th>Botanical name</th>
<th>Vernacular name</th>
<th>Family</th>
<th>Part used</th>
<th>Therapeutic promise</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amaranthus caudatus L.</td>
<td>Lissa</td>
<td>Amaranthaceae</td>
<td>Leaf</td>
<td>Antioxidant [110], antimicrobial [2], leaves an excellent source of protein [19]</td>
</tr>
<tr>
<td>2</td>
<td>Dipsacus mitis D. Don</td>
<td>Wopul haak</td>
<td>Dipsacaceae</td>
<td>Leaf</td>
<td>Anti-fertility and abortifacient [41], against diarrhoea [34]</td>
</tr>
<tr>
<td>3</td>
<td>Malva parviflora L.</td>
<td>Soutchal</td>
<td>Malvaceae</td>
<td>Leaf</td>
<td>Antibacterial and anti-inflammatory [6], antioxidant [14]</td>
</tr>
<tr>
<td>4</td>
<td>Malva sylvestris Linn</td>
<td>Bagh-soutchal</td>
<td>Malvaceae</td>
<td>Leaf</td>
<td>Antioxidant [9], anti inflammatory [9], antibacterial [9]</td>
</tr>
<tr>
<td>5</td>
<td>Nymphea alba</td>
<td>Khor</td>
<td>Nymphaceae</td>
<td>Aerial part</td>
<td>Antibacterial [10], calming, sedative for nervous system, useful in treatment of insomnia and anxiety [61]</td>
</tr>
<tr>
<td>7</td>
<td>Plantago major</td>
<td>Wethe Gullaie</td>
<td>Plantaginaceae</td>
<td>Leaf</td>
<td>Wound healing activity, anti inflammatory, analgesic, antioxidant, weak antibiotic, antiulcerogenic activity [14], antiviral [15], cytotoxic, immunomodulatory [16]</td>
</tr>
<tr>
<td>8</td>
<td>Portulaca oleracea</td>
<td>Numar</td>
<td>Portulacaceae</td>
<td>Leaf</td>
<td>Analgesic, anti-inflammatory [17], wound healing [19], antioxidant [19], antiulcerogenic [20], muscle relaxant [31], hepatoprotective [22], against abnormal uterine bleeding [23]</td>
</tr>
<tr>
<td>9</td>
<td>Rumex nepalensis</td>
<td>Abuj</td>
<td>Polygonaceae</td>
<td>Leaf/Root</td>
<td>Purgative [24], antifungal [39], antibacterial [36], cytotoxic [25], anti-inflammatory, free radical scavenging activity [28], antimicrobial [29], antioxidant [30]</td>
</tr>
<tr>
<td>11</td>
<td>Rheum emodi Wall. ex Meisn</td>
<td>Pamb Haak</td>
<td>Polygonaceae</td>
<td>Leaf/Root</td>
<td>Diuretic, liver stimulant, purgative, cathartic, stomachic, anticholesterolamic, antitumour, antiseptic, antifungal, antimicrobial, anti-Parkinson’s, anti-proliferative, immuno-enhancing, antiviral and antioxidant [35]</td>
</tr>
<tr>
<td>12</td>
<td>Cichorium intybus L.</td>
<td>Kasni handh</td>
<td>Asteraceae</td>
<td>Leaf/Root</td>
<td>Skin diseases, enlargement of Liver [36], antibacterial [57]</td>
</tr>
<tr>
<td>13</td>
<td>Centuria iberica L.</td>
<td>Krtisch</td>
<td>Asteraceae</td>
<td>Leaf</td>
<td>Burns, skin rashes, eye vision and defective lactation [57]</td>
</tr>
<tr>
<td>15</td>
<td>Chenopodium follicolare Asch.</td>
<td>Wan palak</td>
<td>Chenopodiaceae</td>
<td>Aerial part</td>
<td>antimicrobial activity [39], radical-scavenging activity [40]</td>
</tr>
<tr>
<td>16</td>
<td>Atriplex hotensis</td>
<td>Wasta haak</td>
<td>Chenopodiaceae</td>
<td></td>
<td>Antioxidant activity [41], diuretic, emetic and purgative [42]</td>
</tr>
<tr>
<td>17</td>
<td>Phytolacca acinosa</td>
<td>Lober haak</td>
<td>Phytolacaceae</td>
<td>Leaf</td>
<td>Antioxidant activity [43]</td>
</tr>
<tr>
<td>18</td>
<td>Plantago lanceolata</td>
<td>Gulfe</td>
<td>Plantaginaceae</td>
<td>Leaf</td>
<td>Antioxidant and anti carcinogetic [44,45], anti-inflammatory and cytotoxic [46]</td>
</tr>
<tr>
<td>19</td>
<td>Rumex acetosa</td>
<td>Tchok chen</td>
<td>Polygonaceae</td>
<td>Leaf</td>
<td>Antimutagencic and cytotoxic [50]</td>
</tr>
<tr>
<td>20</td>
<td>Oxyria digyna</td>
<td>Churbo</td>
<td>Oxalidaceae</td>
<td>Leaf</td>
<td>Antioxidant activity [51]</td>
</tr>
</tbody>
</table>
Out of the twenty wild vegetables chosen for study in the present review, there is fairly good number of plants with potential therapeutic properties which can be exploited for healthcare (Fig-2). There are about 13 plants like *Amaranthus caudatus* L., *Malva* spp., *Plantago* spp., *Portulaca oleracea* Roxb. etc., which possess impressive anti-oxidative properties. About eight plants possess anti-inflammatory properties. Likewise 6-8 plants have anticancer and other properties. 2-4 plants have either diuretic or liver protectant, vision enhancing or nervine attributes (Fig-2). The prevalence of cancers have been attributed to diet. [52, 53, 61] The search for anticancer plants, particularly those which have remained a part of the diet once is on increase. Heo et al. (2009) investigated that *Rumex acetosa* have potential anti-proliferative properties. *Nelumbium nucifera* Gaertn. has been studied to have psychopharmacological properties [36]. The consumption of wild vegetables may provide millions of consumers with the nutrients needed to maintain health and fight off hazardous infections.

References
7. Hussefn F, Hassan R, Hijazi A, Badran B. Preliminary phytochemical screening and extraction of polyphenol

61. India: Health of the Nation’s States- The India State-Level Disease Burden Initiative. Indian Council of Medical Research (ICMR), Department of Health Research, Ministry of Health and Family Welfare, Govt. of India, New Delhi, 2017.
